146 research outputs found

    Structural characterization of supramolecular assemblies by 13C spin dilution and 3D solid-state NMR.

    No full text
    13C spin diluted protein samples can be produced using [1-13C] and [2-13C]-glucose (Glc) carbon sources in the bacterial growth medium. The 13C spin dilution results in favorable 13C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-13C]- and [2-13C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-13C]-glycerol (13C labeled Cα sites on a 12C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17–26, 2011 ). Inspired by this approach and our own recent results using [2-13C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of 13C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle

    How can managers reduce employee intention to quit?

    Full text link
    This paper reports on an investigation of the variables that may be predictive of intentions to leave a job, and tests a model that includes mediating variables. A total of 173 retail salespeople completed questionnaires measuring commitment to the organization for which they worked, job satisfaction, stress, supervisor support, locus of control, self-esteem, the perceived stressors in the job and their intention to quit. Path analysis was used to test the relationships hypothesized in the model. The majority of hypotheses were supported, with the variables included accounting for 52 per cent of the variance in intention to quit. Emotional support from supervisors and self-esteem mediated the impact of stressors on stress reactions, job satisfaction, commitment to the organization and intention to quit. It is suggested that to ameliorate intention to quit and in turn reduce turnover, managers need to actively monitor workloads, and the relationships between supervisors and subordinates in order to reduce and manage stress. Managers also need to monitor both the extrinsic and intrinsic sources of job satisfaction available to employees. These activities could assist in maintaining and increasing job satisfaction and commitment to the organization. <br /

    Atomic structure and handedness of the building block of a biological assembly.

    Get PDF
    Noncovalent supramolecular assemblies possess in general several unique subunit subunit interfaces.The basic building block of such an assembly consists of several subunits and contains all unique interfaces. Atomic-resolution structures of monomeric subunits are typically accessed by crystallography or solution NMR and fitted into electron microscopy density maps. However, the structure of the intact building block in the assembled state remains unknown with this hybrid approach. Here, we present the solid-state NMR atomic structure of the building block of the type III secretion system needle. The building block structure consists of a homotetrameric subunit complex with three unique supramolecular interfaces. Side-chain positions at the interfaces were solved at atomic detail. The high-resolution structure reveals unambiguously the helical handedness of the assembly, determined to be right-handed for the type III secretion system needle.Additionally, the axial rise per subunit could be extracted from the tetramer structure and independently validated by mass-per-length measurements

    A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme.

    No full text
    The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs 13Cβ-13Cγ2 and 13Cα-13Cγ1 in Val, and 13Cγ-13Cδ2 and 13Cβ-13Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin

    Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.

    Get PDF
    PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils
    • …
    corecore